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Outline

• Description of NOAA AIRS CO2 retrieval methodologies
• How well can we do with a simple climatology?

CO2(t) = a0 + a1 ∗ t

• Development of error estimates.
• Paper on averaging kernels (related to these error estimates)

accepted (with revisions) to IEEE TGARS.

• Validation with full resolution data vs. NOAA ESRL/GMD Aircraft
(2005)1and Global Gridded data vs. JAL Matsueda (August 2003 -
2006.)

• Comparison of AIRS and models – What new information can
AIRS provide to modeling community?

1Submitted to JGR in review
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NOAA AIRS CO2 Retrievals

• Use AIRS Science Team Methodology.
• Version 4.7.

• before cloudy regression introduced.
• NOAA O3 regression on.

• 70 channels (mostly 15 micron).
• Derive CO2 in 4 layers in troposphere, 1 stratospheric.

• Use Optimal Estimation w/ SVD
• Runs within offline science code (consistent RTA/channel set).
• Derive 6 - 10 CO2 basis functions.
• Runs very fast No appreciable difference in run-time compared to

AIRS Science Team methodology
• Validation with full resolution data vs. NOAA ESRL/GMD Aircraft

(2005) and JAL Matsueda between August 2003 - 2006 (only
AIRS Science Team approach).

Each retrieval methodology has the ability to calculate averaging
kernels and related diagnostics (d.o.f., etc.) and propagate error

estimates.
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Improvement Over Simple Climatology

• Theoretical error analysis for our Version 5 Climatology
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• Calculation uses a priori covariance calculated as the dif ference between ESRL aircraft
and our simple Version 5 climatology.

• Ability to partition error sources and their effect on the retrieval. Effect minimized as we
have assumed a perfect knowledge of the error covariation of intefering species (assumed
ad-hoc: S(z, z′) = σ(z)σ(z′) · exp(−|z − z′|/L)).
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ESRL/GMD Aircraft Validation Approach

• Use full resolution AIRS retrievals (previously validated w/ 3◦x
3◦grids)

• Average AIRS CO2 between 6-10 km (nominally where jacobian
has maximum sensitivity).

• Use nominal jacobians (wrt. latitude) to weight ESRL aircraft.
• Enables comparison of scalar measurements
• Removes variability in lowest 2.5 km

• Average all retrievals within 200km with temporal matchup window
between 1 day - 1 month.

• Profile statistics will also be shown. NOAA/ESRL
CarbonTracker2model used to extend profiles above 8 km.

2http://www.cmdl.noaa.gov/ccgg/carbontracker
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Example Comparison: Estevan Point, British Columbia

Estevan Point, British Columbia
 NOAA ESRL/GMD Aircraft and AIRS Retrieval Timeseries
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AIRS Science Team Algorithm vs. ESRL/GMD Aircraft

|∆t| < 7.00 days
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Bradgate, Iowa
Beaver Crossing, Nebraska
Briggsdale, Colorado
Dahlen, North Dakota
Estevan Point,  British Columbia
Fairchild, Wisconsin
Molokai Island, Hawaii
Harvard Forest, Massachusetts
Homer, Illinois
Park Falls, Wisconsin
Worcester, Massachusetts
Oglesby, Illinois
Poker Flat, Alaska
Rowley, Iowa
Rarotonga, Cook Islands
Trinidad Head, California

N MATCHUP : 495
RMS(PPMV)  : 2.06
SDV(PPMV)  : 1.80
IQR(PPMV)   : 2.23
BIAS(PPMV) :-0.99
CORREL     : 0.77
RANKCORREL: 0.79

• Total magnitude of drawdown at LEF not captured possible
over-regularization wrt. characteristic variability.
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• 0.5% uncertainty from space!
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Calculated a priori and Retrieval Error Covariances

Tropical Mid-Latitude/Polar
A Priori Error Correlation Matrix
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• Total variance of the retrieval is less than the a priori indicating a gain in information.
• First eigenfunction variance (and percent of total variance) of the retrieval is less than a

priori.
• Retrieval tends to redistribute variance among higher order eigenfunctions, which are

similar in shape to the a priori, indicating we have only 1 piece of information, albeit well
constrained, in the vertical. Vertical resolution ≈6-8 km.
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Validation of Error Propagation

• In general, predicted errors and actual errors compare very well.
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• Largest discrepancy is above 8 km where the NOAA CarbonTracker model was used to
extend the aircraft profiles.

• Uncertainties in the profile extension procedure, the model profiles, AIRS retrievals and/or
error analysis are possible explanations to the disagreement.
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Comparison of OE and SVD approaches: independent
validation
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• Two retrievals with completely different methods of regularization yield almost the same
results.
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JAL Aircraft Validation Approach

• NOAA 3◦x 3◦gridded subset
• Average AIRS CO2 between 6-10 km (nominally where jacobian

has maximum sensitivity).
• Average all retrievals within 1000km with temporal matchup 1

month.
• Compare to monthly averaged JAL Matsueda over latitude range

(27 months total between August 2003-2006).
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AIRS Science Team Algorithm vs. JAL Matsueda
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JAL Matsueda
AIRS CO2

• SDVE < 1.5 ppmv for all latitude ranges

• Variability in the accuracy wrt. latitude on the
order of retrieval precision

• related to sensitivity of jacobians to
H2O displacement.

• zonal variability of information content.
• Averaged over all latitudes, AIRS retrievals

compare very well:
-0.62 ± 0.87 ppmv

Latitude SDVE BIAS
Range [ppmv] [ppmv]

30S - 10S 1.32 -1.08
10S - 10N 1.04 -0.06
10N - 25N 1.45 -0.42
25N - 40N 1.45 -1.43
30S - 40N 0.87 -0.62
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NOAA ESRL/GMD CarbonTracker vs ESRL/GMD
Aircraft

• NOAA ESRL/GMD CarbonTracker weighted using AIRS jacobians.
|∆t| < 0.50 days
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N MATCHUP : 378
RMS(PPMV)  : 1.25
SDV(PPMV)  : 1.21
IQR(PPMV)   : 1.19
BIAS(PPMV) : 0.32
CORREL     : 0.92
RANKCORREL: 0.93

• 0.5 ppmv better precision than AIRS baseline, however CarbonTracker has been optimized
for N. America.

• From our eigenvector analysis of our a priori, the 1st eigenfunction, a total column
perturbation, explains 80-90% of the variance.

• We would expect good agreement near ESRL aircraft sites because constraint of having
surface / tower measurements in the assimilation.
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Approach to Estimate AIRS Impact

• Determine scales of variability in CarbonTracker calculated as the
gradient in a given direction over a defined time scale.

• Compare to see if AIRS captures the same sort of gradients.
• 3◦x 3◦grids used for comparison.

Thanks to Wouter Peters (NOAA ESRL) for suggesting using CarbonTracker for this approach.
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ESRL/GMD CarbonTracker and AIRS Retrieval CO2

Gradients

 

Estevan Point, British Columbia

Sinton, Texas
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ESRL/GMD CarbonTracker and AIRS Retrieval CO2

Gradients
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• 1-σ monthly variability of FT
gradients shows that in general we
need to resolve 1 ppmv signals
(larger variability in summer
months due to rectifier) on short
timescales.

• Monthly averaged free
tropospheric (FT) gradients are
within our expected error budget in
terms of matching seasonality and
horizontal placement.
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ESRL/GMD CarbonTracker and AIRS Retrieval CO2

Gradients

 

Estevan Point, British Columbia

Harvard Forest, Mass.
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ESRL/GMD CarbonTracker and AIRS Retrieval CO2

Gradients
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• CarbonTracker shows lack of FT
gradient due to rapid
advection/mixing of surface fluxes.

• East-to-west 1-σ variability largest
in the summer months due to
frontal passages and hence strong
mixing (weekly differences in
gradients ≈ ±3 ppm).

• Considering retrieval error budget
(wrt. aircraft) we may be able to
resolve these features on weekly
timescales; however, more study is
required.
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Summary

• Able to provide global retrievals of CO2 on 1-2 weekly timescales
at 1 - 2ppmv precision with a globally fixed a priori.

• Modeling groups at NASA/GSFC, UC/Berkeley, and University of
Leicester, UK have just begun looking at the product.

• Theoretical error estimates enable quick calculation of the AIRS
data impact. These require accurate large scale correlations in a
priori due to the broad width of the kernel functions.

• Require more high altitude profile validation data to gain
confidence in product error correlation.

E. Maddy (PSGS, Inc.) Update on NOAA CO2 retrievals: October 10, 2007 20 / 22



Summary: Future Plans

• True test of product skill is the ability to discern CO2 gradients.
• Model gradients W-E are generally small due to rapid advection of

surface fluxes – we may be able to capture weekly differences.
• As expected N-S gradients are larger with monthly variability on

the order of our precision.
• Monthly comparisons to CarbonTracker show similar features;

more analysis required
1 Determine our ability to match gradients over shorter timescales.
2 Retest AIRS in regions poorly constrained. Model/retrieval

comparisons underway for gradient appropriateness.
3 Understand (inter)product error correlations f(time,space) that

introduce anomalous gradients in AIRS CO2.
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Theoretical Gain Using a CarbonTracker a priori

• Use error propagation to estimate
gain in information content by
adding AIRS CO2 sensitive
measurements initially with
CarbonTracker errors, SCTracker

a .

Ŝ = (A− I)SCTracker
a (A− I)T

+DKbSb(DKb)T

+...

• We plot the error reduction defined
as:

diag(Ŝ)/diag(SCTracker
a )

• Improvement outside of region
where Jacobian (dotted line) is
sensitive is largely due to error
correlation assumed in SCTracker
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Improvement somewhat marginal; however, CarbonTracker is
highly constrained by surface measurements hence SCTracker

a
is small.
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